本站手机站m.dajiadu8.com,服务器懒得转移了,凑合看吧!没收益,所以空间有限,请见谅

首页

科幻小说

走进不科学阅读

设置

字体样式
字体大小

走进不科学:正文卷 第314章 艾维琳的直觉(下)

    第314章 艾维琳的直觉(下)

    “.”

    长椅上。

    看着一脸虚心求教表情的艾维琳,徐云的表情不由有些微妙。

    众所周知。

    人有三大幻觉:

    有人找我、

    我能反杀、

    他/她喜欢我。

    作为一名很有逼数的后世来人。

    徐云虽然没有自恋到妹子会和自己表白的地步,但在听到这姑娘有问题要问自己的时候,多少还是下意识的以为对方会冒出些和自己来路有关的话。

    结果没想到.

    艾维琳所说的问题,还真是一个问题?

    斐波那契数列。

    这是一个非常非常有名的数学谜团,在数学和生活以及自然界中都极其有用。

    斐波那契数列最早可以追溯到公元7世纪,当时印度有个数学家叫做Gopala。

    此人在研究箱子包装物件长度恰好为1和2时的方法数时首先描述了这个数列,也就是下面这个问题:

    有n个台阶,你每次只能跨一阶或两阶,上楼有几种方法?

    接着这个问题再一次变化,进阶成了更有名的兔子谜团:

    假设兔子在出生两个月后就有繁殖能力,一对兔子每个月能生出一对小兔子。

    如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?

    这个问题最终由斐波那契归纳成了一个数列,也就是:

    0,1,1,2,3,5,8,13,21,34,55,89,144,233,377…这样一个无限数列。

    它的特点是后一个数字是前两个数字之和,0+1=1,1+1=2,1+2=3往后类推.

    而且用前一个数字来除以后一个数字,就无限接近于黄金分割数0.618。

    这个数列用公式表达的话则是Xn=X(n-1)+X(n-2),其中X0=0,X1=1。

    小说《达芬奇密码》中。

    卢浮宫馆长被人杀害陈尸在地板上,当时馆长脱光了衣服,摆成达·芬奇名画维特鲁威人并且留下了一些奇怪的密码。

    而这些让人难以琢磨的密码,正是斐波那契数列。

    自然界中的蜜蜂家谱、松果叶序甚至瓜果外形都和斐波那契数列有关——2005年曹则贤教授与中国科学院物理研究所合作,利用银核和氧化硅壳研究直径约10微米的微结构中的应力。

    最终通过操纵银核和二氧化硅壳构成的无机微结构上的应力,顺利的产生了斐波那契螺旋图案。

    数学和物理越深入研究,就越会感叹生命的奇妙。

    对了。

    既然说到了曹则贤教授,这里就顺带简单辟个谣。

    这位曹则贤教授也是个争议性很大的名嘴,他是科技部973纳米材料项目的首席科学家,百人计划级别的大佬。

    不过嘴中经常会冒出一些比较离谱的观点,其中有真也有假。

    例如他曾经在国科大的讲座上说过这么一句话:

    “有85%的数学和物理知识没有传入华夏,这些知识都被外国人紧紧捂着。”

    这句话其实是有些唬人的,有点刻意为人设而口出狂言的味道。

    谁都知道国外必然有一些知识没有与咱们共享,但那些内容主要涵盖于前端领域,并且决然没有85%这么离谱。

    于是呢。

    当时被和他一起说出口、用于佐证以上观点的另一句话,在网上便也成了笑谈:

    “你们不知道吧,三角形有44072个心。”

    但实际上这句话是正确的,并且是一个非常正式的数学研究方向。

    只不过它是隶属于初等平面几何的结论,平几早就不再是前端数学的研究方向了,对于大多数人来说基本上用不到。

    所以这个知识不是没传入国内,而是教了也没啥意义——哪怕是国外顶尖大学的顶尖竞赛班,也不会对这些三角心进行研究。

    一般来说。

    普通人只需要掌握五心,学几何的顶多顶多掌握50种就到顶了。

    再往后差不多属于纯理论的范畴,极其冷门且偏僻。

    因此曹教授拿这个例子去佐证“有85%的数学和物理知识没有传入华夏”的做法并不正确,不过本身这个数字没啥问题。

    不是反智,更不是民科,因为三角心的判定是三线共点,由此锁定的心实在是太多太多了。

    目前有个网站将这些心都收录在了一起,网址为faculty.evansville.edu/ck6/encyclopedia/ETCPart4。(这位毕竟是蜗壳的教授,口嗨的内容躺平任嘲,不过这个数据倒确实是无误的)

    OK,话题再回归原处。

    斐波那契数列在生活和数学上的应用极广,而其中的完全平方项有哪些,也一直是个很有矛盾色彩的问题。

    所谓完全平方数。

    指的是一个数能表示成某个整数的平方的形式。

    比如说4=2^2,9=3^3,256=4^4等等

    为啥说斐波那契数列中的完全平方项是个很矛盾的问题呢?

    原因很简单。

    这个问题直到徐云穿越的五十多年前,也就是1964年的时候才被英国的数学家J. H. E. Cohn计算出来。

    从时间节点上来说,无疑属于近代才被破解的一道难题。

    但与此同时。

    它的破解过程运用的都是初等数论内容,和素数定理与四色定理一个性质。

    这也是极少数能够用初等数论解决的数学难题之一,理论上在1800年其实就可以破解出来了。

    当然了。

    以前那个极少数的例子不包括哥猜——运气好的话,每年你都能看到上千条哥德巴赫猜想的初等证明从国内外的民科手中诞生.

    不过就像物理学可以分成经典物理和更微观的量子物理一样。

    J. H. E. Cohn也就是科恩证明出来的完全平方项只是某个范围内的答案,比较公认的是前二十万个斐波那契数这个范围。

    如果将范围无限扩大,那么还是可以再找到几个完全平方项的。

    比如说第四个数是884358447525575649,大概在1056412078的位置。

    再往后还有6.1613e+030,9.9692e+030等等

    这种同样是属于理论上的研究范围,对于目前的艾维琳来说,使用科恩的解题方式就足够了。

    随后徐云接过纸和笔,一边说一边演算了起来:

    “首先我们先定义一个卢卡斯数列,也就是斐波那契数列,Xn=X(n-1)+X(n-2),不过X属于N,N≥3”

    “接着把定义域由自然数集推广到整数集.,可得2F_{m+n}=F_{m}L_{n}+F_{n}L_{m}”

    “令m=1,可得2F_{n+1}=F_{1}L_{n}+F_{n}L_{1}从而2L_{m+n}=5F_{m}F_{n}+L_{n}L_{m}”

    “然后这样进进出出(数学归纳法)加速减速(二次剩余).再把它磨润一点(欧拉判别法),从这个位置摸两下(辗转相除法)然后九浅一深(模周期数列)”

    十多分钟后。

    “.综上所述,1,1,144,就是斐波那契数列中仅有的完全平方项!“

    徐云放下笔,深呼出一口气,对艾维琳说道:

    “搞定!”

    艾维琳接过算纸,仔细的看了起来。

    徐云则靠到了长椅上,在艾维琳视野的盲区抹了把额头上的汗。

    总算搞定了.

    接下来应该可以润了吧?

    然而就在徐云以为自己过关之际,他的耳边忽然又响起了艾维琳的声音:

    “罗峰同学,伱是什么时候解开斐波那契数列中完全平方项这个问题的?”

    徐云此时的心态相对有些放松,闻言下意识便一张口:

    “十九岁”

    不过话未说完,他便猛然醒悟了过来,只见他飞快的坐直身体,嘿嘿干笑道:

    “艾维琳同学,瞧你说的,什么我解开的问题.”

    “这是我十九岁的时候,从肥鱼先祖留下的手稿里发现的演算成果啦。”

    艾维琳似笑非笑的看了他一眼,确认道:

    “你说的是真的?”

    徐云的心中隐隐浮现出了一丝不太好的预感,不过如今话既出口,自然没有回收的道理:

    “当然是真的,我可是号称日更三万的实诚小郎君呢.”

    艾维琳依静静的看了他几秒钟,忽然从身上取出了两份文稿,递到徐云面前:

    “那你看看这个。”

    徐云下意识的接过手稿,放到面前翻阅了起来。

    第一份的手稿年代似乎有些久远,字迹比较凌乱,颇有些放飞自我的味道,不过却透着一股莫名的熟悉感。

    第二份手稿的字迹则要清秀工整很多,徐云一眼就认出了这是艾维琳的手迹:

    圣诞节那天大家都在日记本上写下了未来的期望,艾维琳无论是字迹还是内容都令徐云记忆犹新。

    而这两份手稿除了字迹的差异之外,上头的内容更是令徐云瞪大了眼睛:

    虽然解题方式不同,但它们都是在论证斐波那契数列中完全平方项的问题!

    其中第一份手稿的方法比较原始,切入点为费马小定理。

    然后它通过了n次单位根的泰勒公式进行转变,‘自修’出了一个比较原始的奇质数校验逻辑。

    艾维琳的推导过程在工具上比较简单,步骤则略微有些繁琐。

    她的过程有一些地方可以进行化简,但主要的思路却和徐云

    完全一致!

    毫无疑问。

    早在徐云开口之前,艾维琳便最少掌握了两种解题方法。

    眼见徐云不停的在咽唾沫,艾维琳继续补上了刀:

    “罗峰同学,如你所见,第一份手稿是牛顿先祖留下的推导过程,第二份则是我的劣作。”

    “牛顿先祖活着的时候欧拉才20岁不到,远远没有推导出欧拉判别法。”

    “因此他虽然破解了这个斐波那契数列中的难题,运用的却只是自己创造的一个逻辑工具,其他思路也比较原始。”

    “同时牛顿先祖与肥鱼先生亦师亦友,凡事都爱和肥鱼先生较劲,因此他在计算出这个结果后曾经留下过一句话”

    说着艾维琳抬头看向了徐云,说道:

    “他说‘如果肥鱼那家伙也能破解这个问题,唯一的方法便是与我一样,通过韩立展开自修出一个逻辑工具’。”

    “而你的这个计算过程中,却大量运用到了欧拉判别法,这可是欧拉在1757年才归纳出来的方式.”

    “.”

    徐云沉默了几秒钟,感觉应该再抢救一下自己:

    “艾维琳同学,难道就不能是肥鱼先祖比欧拉先推导出这个定则的吗?”

    艾维琳摇了摇头,从身上取出了一份更老旧的手稿,说道:

    “当初牛顿先祖在计算无穷量级的时候曾经遇到过巨大的瓶颈,当时肥鱼先生曾经提出过一次二次近似的公式,也就是这个。”

    徐云微微一愣,接过了稿纸。

    纸上的内容并不多,只列着一道公式:

    V(r)≈[V’’(re)/2!](r-re)^2。(第三十二章,收伏笔啦,埋了一百五十万字,让我叉会儿腰,可牛批了)

    艾维琳见状补充道:

    “从这个公式就能看出,肥鱼先生的思路并不遵循二次互反律,和欧拉截然是两个体系。”

    “你应该知道,对于一名数学家来说,思维体系并不是一个轻易能转变的东西。”

    说完她又从徐云手中抽回了自己的那卷手稿,在徐云面前摇了摇:

    “另外你和我的推导过程近乎一致,整个过程都带着明显的后欧拉时代色彩,绝不可能是百年之前的成果。”

    “所以.”

    艾维琳的眼睛在暖阳中如同宝石般透亮,空灵的声音直击徐云内心:

    “包括之前的一些实验设计在内,有相当多其实都是出自你本人之手,我说的对吗?”

    “.”

    徐云默然。

    实话实说。

    自从当初被艾维琳发现光伏效应的称谓漏洞后,他其实一直在避免着再次翻车。

    比如说他给高斯的相对论方程,又比如在阴极射线中的各个环节等等,都经过了大量的魔改

    但问题是

    他在实验环节涉及到的内容,大多数都和物理有关。

    而这次艾维琳提出的,却是一个数学问题。

    要知道,大多数物理知识是可以进行阶段性分割的。

    举个例子。

    此前提过的洛伦兹力公式f=qVBsinθ。

    在1895年这个公式被归纳之前,除非你是穿越者,否则不可能算出某某条件下的洛伦兹力。

    但数学却不太一样。

    数学的很多概念是具备递增性的。

    也就是某个公式归纳出来之前,你其实有一定机会去找到它的雏形。

    比如说A在某个区间内完成了多少工作,B在他之后又进行了补充,最终由C把这个规律扩散到了某个更大的范围——例如整数集等等。

    所以至少对于徐云这么一个物理汪来说。

    你让他在解初等数论时去考虑欧拉判定是否已经建立,这实际上是一个难度很高的细节性问题。

    需要很高的数学敏感性。

    如果他有足够的时间进行思考或者分辨那还好点,说不定有较大概率打个补丁啥的。

    但今天艾维琳出现的太突然了,话题的主动性也不在徐云手里。

    因此接连的因素重合,徐云这次便再次出现了一个巨大巨大超级超级的失误:

    他用上了欧拉判别法的推导体系,也就是他后世学过的相关方法。

    于是乎他就被小黑子附身,露出了鸡脚.

    看着面前一脸笃定的艾维琳,徐云不由暼了暼她手上的那本《经典物理》。

    如果自己否认的话,这姑娘该不会让自己也感受一番知识的力量吧?

    况且就目前的情况来说,自己否不否认其实也没啥区别了.

    想到这里。

    徐云不由幽幽的叹了口气,很光棍的点了点头:

    “嗯。”

    听到这个答案。

    艾维琳的脸上忽然露出了一丝笑容。

    嘴角的弧度似月牙般完美,像是面上的一道涟漪,迅速划过脸部:

    “看来.我猜对了,你其实是个天才,一个真正的天才,对吗?”

    (本章完)