本站手机站m.dajiadu8.com,服务器懒得转移了,凑合看吧!没收益,所以空间有限,请见谅

首页

科幻小说

走进不科学阅读

设置

字体样式
字体大小

走进不科学:正文卷 第356章 赵政国的来意(下)(感谢天瑞说符

    第356章 赵政国的来意(下)(感谢天瑞说符打赏的盟主!)

    实验室里。

    看着嘴中冒出“跃迁”二字的徐云。

    赵政国眼中顿时闪过了少许意外。

    徐云能够猜对答案并不稀奇,但他只用这么点儿时间便做出正确判断,这就有些出乎赵政国的意料了。

    不过徐云毕竟不是他的学生,出现误判倒也还算正常。

    随后他沉吟片刻,轻轻点了点头:

    “没错。”

    “.”

    徐云拎着水壶的手微微一抖,一小股茶水从壶口流出,在桌上绽开一朵水渍。

    但他却仿若没有注意到这个情况一般,目光直愣愣的看着赵政国。

    曾经变身过迪迦的同学应该知道。

    在现有的所有微粒模型中,有一个粒子极为特殊。

    它就是光子。

    光子在真空中的速度等于光速,而其他粒子无论如何都加速不到这个量级。

    导致这个情况的核心原因不是加速设备的技术问题,而是光子的特殊性:

    它不存在静质量的定义。

    注意。

    是不存在静质量的定义,而不是为0。

    学过高中物理的同学应该都知道。

    如果把一个粒子加速到一定速度v,牛顿力学定义了这个粒子的动量p。

    动量正比于速度v,它的比例系数便称为粒子的质量m。

    而在狭义相对论中。

    老爱把牛顿力学中动量p的定义进行了推广。

    尽管p和v指向同一方向,但它们不再成正比,它们通过相对论质量联系了起来。

    当粒子静止时,它的相对论质量有着最小的值。

    这个值就是静质量。

    在目前的微粒框架中,几乎所有粒子都可以测出静质量。

    比如以正负电子湮灭反应和高能γ射线光子的电子对效应,就可以计算出电子的质量为大概是9.10956×10^-31kg等等。

    唯独光子例外,因为光子不会静止。

    目前经常可以看到一些‘光子静质量为0’或者‘光子的质量是10-^55kg’之类的文章,它们实质上讨论的都是四波矢类光。

    涉及的是诺特定理中均匀空间中平移不变性的守恒量,而非真正意义上的光子静质量。

    目前对光子真正的释义是这样的;

    光子不存在静质量的定义,但它拥有能量。

    没有静质量定义,这也是超距作用的支撑之一。

    当然了。

    还是那句话。

    现有的微粒模型依旧存在很大的补充空间,随时可能出现一些颠覆性的发现。

    比如说希格斯粒子。

    比如说引力波——之前写到引力波的时候居然还有人说引力波是概念,没人能证明它存在。

    说这种话的要么是把引力波看成了引力子,要么就是个15年之前来的穿越者.

    又比如15年拿诺奖的中微子振荡。

    中微子振荡是中微子有质量的一个证明,而根据标准模型中的理论推导来看,中微子其实是没有质量的。

    人类的科技、理论,就是在一次次的推倒、修补中得以完善的。

    而很明显

    这一次。

    人类又发现了一个无法触摸的‘幽灵’粒子。

    “.”

    实验室内。

    在从赵政国的口中得知了实验结果后。

    徐云足足沉默了好一会儿,才缓缓呼出了一口浊气。

    实话实说。

    在计算出那条粒子轨道的时候,他真正在意的并非是可以被捕捉的粒子,而是那条轨道方程。

    因为从严格意义上来讲。

    ‘粒子轨道’这个词,表述上其实带着一定经典力学框架的误导性。

    很多人可能以为这个轨道是类似四驱车的固定滑道,粒子们运动后就像旋风冲锋一样在固定的轨道上biu来biu去。

    但实际上呢。

    所谓的轨道,只是类氢原子电子运动的本征波函数。

    它并不是说电子被卡在某一条轨道,或者被框在某一个空间区域内。

    任何一个波函数都是弥散到整个空间的,只不过是电子出现的概率幅不同罢了。

    所以徐云当时计算出的轨道方程,某种意义上来说是一个概率结果。

    只是这个概率相对较高而已。

    在徐云看来。

    这个轨道如果能捕捉到微粒,那么或许可以对今后的其他微粒观测结果有所帮助——目前所有的符合大家认知的‘轨道’,实际上都是在出了碰撞结果后逆推绘制出来的。

    而一般情况下。

    一次数十万华夏币成本的微粒对撞,能撞出来二十个共振态样本都算很不错了。

    结果没想到。

    这次的主人公并非是那条轨道,而是

    被发现的微粒?

    想到这里。

    徐云心中冒出了少许猜测,又看向了赵政国,对他问道:

    “赵院士,所以您今天来是为了”

    赵政国点点头,拿起水杯抿了一口水,放下杯子后道:

    “嗯,今天找你主要有两件事。”

    “第一件很简单,就是提醒你别把这事情说出去。”

    “虽然孤点粒子需要配合轨道方程才能找到,实际的保密级别没那么高——否则我就不会在这儿和你聊了,不过这种事情还是别到处张扬为好。”

    徐云点了点头:

    “没问题,我明白。”

    接着赵政国看了眼窗外,沉吟片刻,又说道;

    “另一件事就是和粒子本身有关,小潘在发现这颗粒子后给它取了个名字,叫做孤点粒子。”

    “这颗孤点粒子和光子的特性类似,但捕捉起来的难度却要容易许多,所以小潘那边现在准备用它来作为量子隐形传态的纠缠源试试。”

    “毕竟这种粒子和光子一样,没有静质量定义,两个孤点粒子可以进行灵敏度极高的差分测量,相对精度甚至能达到26阿米。”

    “所以我今天来找伱的另一件事,就是想问问你.”

    “有没有兴趣进小潘和我的组来帮帮忙?”

    徐云顿时一愣。

    回过神后。

    心中骤然升起一股暖意。

    不久前,2022年的物理学奖授予了量子物理,而且方向正是量子纠缠。(不是我看到诺奖才写这个概念蹭热度哈,这本书上架的第一章——也就是58章我就提过这个概念,微粒的情节在217章,今年五月份写的,老书的124-125章整整两章描述了量子纠缠,那是去年五月底发的,同时老书传送阵的原理也是这个,对应章节都有发布时间)

    虽然按照诺奖的尿性,同样一个研究方向很难重复得奖,但这只是对大多数情况来说罢了。

    而孤点粒子的特性.

    显然不在‘大多数情况’的范畴。

    在目前的科学界中,微粒的数据修正一直都是个热门方向。

    就像2015年诺奖授予了中微子振荡,2013年授予了希格斯粒子的提出者希格斯一样。

    孤点粒子毫无疑问是一个诺奖级的研究方向。

    能如果能加入赵政国或者潘帅的团队,这个履历已经不是普通的镀金了,代表着无限光鲜的未来!

    但是

    徐云的心中微微叹了口气。

    赵政国的想法虽好,不过他并不准备接过这根橄榄枝。

    毕竟他可是有光环在身,进入项目组与他人长期接触可能会有所不便——特别是在任务结束返回现实的前后。

    另外

    说句不自大的话。

    如今徐云有光环协助,诺奖其实并不是什么难以触及的虚无梦想。

    于是他沉吟片刻,准备婉言谢绝赵政国的好意:

    “赵院士,您的好意我心领了,不过华盾生科目前正处于.”

    结果话没说完,徐云便猛然想到了什么,整个人顿时僵在了原地。

    随后他机械式的转过头,盯着赵政国,一字一句的问道:

    “赵院士,您刚才说.”

    “孤点粒子的差分测量精度是多少?”

    赵政国诧异的看了他一眼:

    “26阿米,怎么了吗?”

    “26阿米”

    徐云喃喃的重复了一遍这个数字,看似平静的表情下,心跳飞快的窜到了140+!

    过了小半分钟。

    他深深的吸了口气,脸色一正,对赵政国道:

    “赵院士,有关孤点粒子的特性研究,可以分包一部分项目给我吗?——仪器的工损可以由华盾生科全额承担。”

    看着前后态度截然不同的徐云,赵政国眼中不由冒出了一个问号,沉吟道:

    “仪器工损和项目分包这个可以后面再谈,只是小徐,你怎么突然就.”

    “我怎么突然转变了想法是吧?”

    徐云的嘴角扬起一丝复杂的笑容,在赵政国疑惑的目光中放下水壶,走到实验室中属于他的操作台边,输入密码,取出了一份文件。

    接着走回位置,将文件递给了赵政国:

    “赵院士,您看看这个。”

    赵政国顺势接过,像是个老医生似的抖了抖纸页,一字一句的看了起来:

    “重重力梯度仪.测量模块设计方案?”

    徐云在一旁配合着点了点头,解释道:

    “没错,赵院士,准确来说,这是我在研究玻色爱因斯坦凝聚态课题时想到的一些灵感。”

    “最先得到玻色爱因斯坦凝聚态的原子是铷,于是我就顺着这个方向去筛选了一些应用,结果发现唯一脱离实验室的就只有GOCE卫星上的重力梯度仪。”

    “那台梯度仪靠着超冷铷原子云将精度突破到了10^12m/s,我就想着有没有啥机会再达到更高的精度。”

    “奈何由于静质量的限制,理论上即便用粒子来做测量中介,也很难达到那种量级——因此一开始我只是把它当成YY脑洞保存在了一旁而已。”

    “只是没想到”

    赵政国手中拿着字迹有些潦草的设计图纸.或者说徐云的‘随笔’,若有所思的接话道:

    “只是你没想到,孤点粒子突破了常规静质量的定义,所以你想分出一部分项目设备来试试?”

    徐云轻轻点了点头。

    没错。

    此时徐云拿出来的设计图,正是重力梯度仪的部分设计方案!

    早先曾经说过。

    重力梯度仪不同于其他技术,这玩意儿和华盾生科目前的研究方着实差的有些多。

    徐云必须要找到一个合理的逻辑,才能把它慢慢的拿到现实。

    于是在过去的一个月里,他一直都在思考着合适的切入点。

    这个切入点首先必须要确确实实的涉及到重力梯度仪的研发流程,其次地位上最好能牵一发而动全身。

    同时呢,突破后技术和现有技术的断代不能太大,理论层次的十年算是一个极限了。

    最终的思索之下,徐云锁定了三个切入点:

    重力梯度仪的发射平台、反馈数据的测量模组、以及共振变量的消除模块。

    其中一三两点都涉及到了航空和工程学,不能说和徐云的专业没有任何关联吧,至少难度很大。

    所以三个切入点中最合适的,便是测量模组。

    在传统重力梯度仪中。

    测量模组主要是以类陀螺仪的设备为主,精度方面基本被限制在是10^6以内。

    至于再往上的测量方式嘛.

    那就已经脱离了经典物理,涉及到了微观领域。

    比如此前所说的GOCE卫星。

    它就是利用两个垂直间隔一米的两个超冷铷原子云进行差分测量,从而获取高精度数据。

    只有微粒的尺度,才能保证更高量级的精度。

    而很凑巧的是

    铷原子的差分测量

    恰好是玻色爱因斯坦凝聚态的范畴。

    啥叫玻色爱因斯坦凝聚态咧?

    它的缩写为BEC,是量子物理中最经典的模型之一。

    1924-1925年左右。

    老爱同学根据量子力学和统计力学的原理,推断出当温度低于一个临界温度Tc时,一堆没有相互作用的玻色子就会慢慢地占据相同的“轨道”,形成一种“凝聚”。

    用人话来翻译一下:

    天气冷的时候,动物们都知道要抱团取暖。

    毕竟冷嘛,挤在一起就舒服点。

    而基本粒子之一的玻色子也一样。

    温度高的时候也可以到处跑,但是温度低了,自己的能量也低了,跑不动了,就都在能量低的地方抱团取暖。

    等到温度低得不能再低了,不管老实的还是浪荡的玻色子,无论你原来是什么成分,大家谁都不嫌弃谁,都聚在一起,不排斥彼此,相亲相爱的共同面对极度的寒冷。

    这就是玻色爱因斯坦凝聚态。

    这个模型在芯片技术、精密测量和纳米技术等领域都有美好的应用前景,上世纪90年代后有关BEC的研究迅速发展,观察到了一系列新的现象。

    如BEC中的相干性、约瑟夫森效应、蜗旋、超冷费米原子气体等等.

    截止到2022年。

    全世界已经有数十个实验室实现了8种元素的BEC,相关工作已有6人次获得诺贝尔物理学奖。

    没错!

    看到这里,聪明的同学想必已经记起来了:

    BEC的数学模型,正是徐云在物理的研究方向!

    这个方向甚至不是选修课题,而是他的主阵地。

    而历史上第一个玻色爱因斯坦凝聚态的物质

    就是通过铷原子完成的。

    从这个角度切入,徐云可以非常完美的链接到重力梯度仪设计。

    也就是【大佬,我发现了XX原子/粒子,在玻色爱因斯坦凝聚态下的测量量级比铷原子高,目前铷原子在实验室外唯一的用途就是重力梯度仪,所以咱们是不是能试试运用在重力梯度仪】云云.

    完美.JPG。

    只是

    思路虽然顺滑,但实操起来却难度很大。

    因为

    徐云tmd找不到对应的微粒啊.

    铷原子之所以能被作为重力梯度仪的测量材料,主要是因为它属于一种原子频标:

    这玩意儿和铯都可以看做是类氢原子,即一个电子加一个原子实的结构,能级结构比较简单。

    同时,它们量子态的选择和制备以目前的技术来说也比较容易实现。

    否则的话,欧洲那边也不会选用铷来做测量粒子。

    换而言之.

    想要找到和铷相同量级的粒子都很困难,遑论比铷原子精度还高四个量级的微粒了。

    因为除了光子之外的微粒都有静质量,这个静质量就限制了它们自身会对效果产生影响。

    按照徐云的设想。

    目前最合适的微粒应该是中微子,但如果能稳定捕捉这玩意儿,科学技术早就领先奖励的那款重力梯度仪不知道多少代了。

    所以在想出了这个思路后,实操环节便陷入了一个闭环。

    结果没想到.

    自己苦寻无果的小黑子,居然在孤点粒子这边露出了小鸡脚?

    注:

    感谢火星巨打赏的盟主,有种卖身的感觉QAQ

    推一本朋友的书哈,《我能修改人设词条》,一个老作者的书了。

    当【救世主哈利】变成【救世主哈莉】,故事会变得怎么样?

    (本章完)